:quality(75)/cach_tinh_phuong_sai_08_f614433153.jpg)
:quality(75)/Thuy_Diem_9064f3325f.jpg)
:quality(75)/Thuy_Diem_9064f3325f.jpg)
Cách tính phương sai và độ lệch chuẩn: Hiểu rõ mối quan hệ giữa hai khái niệm thống kê quan trọng
Cách tính phương sai là một trong những phương pháp quan trọng trong thống kê, giúp chúng ta đánh giá sự biến động của một tập hợp dữ liệu. Khi thực hiện phân tích dữ liệu, việc hiểu rõ cách tính phương sai và độ lệch chuẩn sẽ giúp bạn nắm bắt được sự phân tán và độ ổn định của dữ liệu.
Hai khái niệm phương sai và độ lệch chuẩn có mối quan hệ mật thiết, giúp cho việc đo lường và giải thích các yếu tố quan trọng trong nghiên cứu và phân tích dữ liệu được dễ dàng và chính xác hơn. Cách tính phương sai không chỉ đơn thuần là một phép toán, mà nó còn giúp bạn nhận biết được các yếu tố tiềm ẩn trong dữ liệu, từ đó đưa ra các quyết định và dự đoán đúng đắn hơn trong nhiều lĩnh vực như tài chính, khoa học, hay quản trị.
Tìm hiểu về phương sai
Phương sai là gì?
Phương sai là một chỉ số đo lường độ phân tán của các giá trị trong tập dữ liệu quanh giá trị trung bình. Hiểu đơn giản, phương sai cho thấy mức độ mà các điểm dữ liệu khác nhau so với giá trị trung bình của tập dữ liệu đó. Nếu phương sai lớn, điều đó có nghĩa là các giá trị trong tập dữ liệu phân tán xa so với giá trị trung bình; nếu phương sai nhỏ, điều đó có nghĩa là các giá trị gần nhau hơn và tập dữ liệu ít biến động.
Ý nghĩa của phương sai
Trong thống kê và phân tích dữ liệu, phương sai giúp đánh giá mức độ biến thiên của dữ liệu, từ đó hỗ trợ các quyết định về chiến lược hay dự báo. Phương sai cao thường biểu hiện sự không đồng nhất trong dữ liệu, trong khi phương sai thấp cho thấy sự đồng nhất cao. Đối với các nhà quản lý và nhà phân tích, việc hiểu cách tính phương sai giúp họ đưa ra các dự báo chính xác hơn và điều chỉnh các quyết định dựa trên sự biến động của dữ liệu.
Cách tính phương sai đơn giản
Phương sai của tập dữ liệu mẫu
Cách tính phương sai như sau, lấy tổng của bình phương độ lệch của từng giá trị so với giá trị trung bình, sau đó chia cho số lượng mẫu trừ đi 1.
Công thức:
Phương sai của tập dữ liệu tổng thể
Tương tự, nhưng ta chia cho tổng số lượng các giá trị thay vì n-1.
Công thức:
Ví dụ:
Tìm hiểu về độ lệch chuẩn
Độ lệch chuẩn là gì?
Độ lệch chuẩn là căn bậc hai của phương sai, giúp đo lường sự phân tán dữ liệu dưới dạng giá trị thực. Trong khi phương sai biểu thị mức độ phân tán của dữ liệu dưới dạng bình phương, độ lệch chuẩn đưa nó trở về dạng giá trị thực, giúp việc diễn giải kết quả trở nên trực quan hơn.

Phương sai và độ lệch chuẩn khác nhau thế nào?
Phương sai đo lường sự phân tán dựa trên bình phương của các độ lệch, còn độ lệch chuẩn đưa các giá trị về dạng gốc (dạng tuyến tính). Độ lệch chuẩn thường được ưu tiên hơn trong nhiều phân tích vì nó giúp so sánh các độ lệch so với các giá trị gốc của dữ liệu.
Cách tính độ lệch chuẩn và ví dụ
Ứng dụng của phương sai và độ lệch chuẩn
Ứng dụng trong tài chính và nghiên cứu
Phương sai và độ lệch chuẩn thường được sử dụng trong các mô hình tài chính để đánh giá mức độ biến động của cổ phiếu, rủi ro đầu tư và biến động thị trường.
Vai trò trong đánh giá rủi ro
Cả hai chỉ số này giúp các nhà đầu tư xác định mức độ rủi ro, dựa trên sự biến động của tài sản hoặc thị trường tài chính.

Sai lầm thường gặp khi tính phương sai và độ lệch chuẩn
- Không sử dụng đúng công thức khi tính phương sai cho mẫu hoặc tổng thể.
- Nhầm lẫn giữa phương sai và độ lệch chuẩn khi diễn giải kết quả.
- Sử dụng dữ liệu không chuẩn hóa, dẫn đến sai sót khi tính toán. Khi dữ liệu có độ lớn rất khác nhau hoặc chứa các đơn vị đo khác biệt, không chuẩn hóa dữ liệu có thể dẫn đến sai số khi tính phương sai hoặc độ lệch chuẩn.
Tạm kết
Hiểu rõ cách tính phương sai và độ lệch chuẩn là rất quan trọng trong thống kê và phân tích dữ liệu. Phương sai giúp chúng ta nắm bắt sự phân tán tổng thể, trong khi độ lệch chuẩn cung cấp cái nhìn thực tế hơn về sự biến thiên của dữ liệu. Hy vọng bài viết đã giúp bạn biết được cách tính phương sai và độ lệch chuẩn chính xác đơn giản.
Nếu bạn đang cần nâng cấp thiết bị làm việc và học tập, hãy ghé qua FPT Shop để tham khảo các sản phẩm phù hợp với nhu cầu của mình nhé!
Xem thêm các sản phẩm máy tính xách tay mới ở đây:
Xem thêm:
- Bật mí các trang web giải hệ phương trình chính xác, miễn phí
- Cách tính giá trị biểu thức – Hướng dẫn quy trình giải bài tập chi tiết và chuẩn xác